Помогите решить) В прямоугольном треугольнике KPE угол P= 90 градусов, угол K= 60 градусов. На катете...

Тематика Геометрия
Уровень 5 - 9 классы
треугольник прямоугольный треугольник геометрия угол катет точка решение задачи длина отрезка
0

Помогите решить) В прямоугольном треугольнике KPE угол P= 90 градусов, угол K= 60 градусов. На катете PE отметили точку M такую, что угол KMP= 60 градусов. Найдите PM, если EM= 16 см

avatar
задан месяц назад

2 Ответа

0

Для решения данной задачи мы можем воспользоваться теоремой синусов.

Обозначим длину стороны KP как x. Так как угол K равен 60 градусов, то угол P равен 30 градусов (так как сумма углов в треугольнике равна 180 градусов). Теперь можем найти длины сторон KP и EP с помощью тригонометрических функций.

По теореме синусов имеем: sin(30 градусов) = PM / EM sin(30 градусов) = PM / 16 PM = 16 sin(30 градусов) PM = 16 0.5 PM = 8 см

Итак, длина отрезка PM равна 8 см.

avatar
ответил месяц назад
0

Давайте решим задачу шаг за шагом, используя свойства треугольников и геометрические теоремы.

Шаг 1: Анализ треугольника KPE

  • В прямоугольном треугольнике KPE угол ( P = 90^\circ ).
  • Угол ( K = 60^\circ ).
  • Следовательно, угол ( E = 30^\circ ), так как сумма углов в треугольнике равна ( 180^\circ ).

Шаг 2: Определение свойств точки M

  • На катете ( PE ) отмечена точка ( M ), такая что угол ( KMP = 60^\circ ).

Шаг 3: Определение треугольника KMP

  • Рассмотрим треугольник ( KMP ).
  • Из условия угол ( KMP = 60^\circ ).
  • Поскольку угол ( K = 60^\circ ), а угол ( P = 90^\circ ) в треугольнике KPE, треугольник KMP тоже имеет угол ( K ) равный ( 60^\circ ).

Шаг 4: Свойства треугольника KMP

  • Треугольник ( KMP ) является равносторонним, потому что угол ( KMP = 60^\circ ), угол ( K = 60^\circ ) и, следовательно, угол ( MPK = 60^\circ ), что делает все углы в треугольнике равными.

Шаг 5: Стороны треугольника KMP

  • В равностороннем треугольнике все стороны равны.
  • Это означает, что ( KM = MP = KP ).

Шаг 6: Определение длины PM

  • Известно, что ( EM = 16 ) см.
  • Поскольку треугольник KPE прямоугольный и ( E = 30^\circ ), катет ( PE ) является противоположным углу ( E ).
  • В прямоугольном треугольнике с углом ( 30^\circ ), отношение длин катета, противоположного углу ( 30^\circ ), к гипотенузе равно ( 1:2 ).
  • Таким образом, гипотенуза ( KE = 2 \times PE = 2 \times 16 = 32 ) см.

Заключение

  • В равностороннем треугольнике ( KMP ), стороны равны, и поскольку ( PM = KM ) и, следовательно, ( PM = 16 ) см (как и ( EM )).
  • Таким образом, длина отрезка ( PM ) равна ( 16 ) см.

avatar
ответил месяц назад

Ваш ответ

Вопросы по теме