Для разложения вектора CM по векторам OA, OB и OC нам необходимо воспользоваться свойствами параллелограмма.
Известно, что в параллелограмме противоположные стороны равны и параллельны. Таким образом, вектор СМ равен вектору BD, так как они оба соединяют середины противоположных сторон параллелограмма.
Теперь можем разложить вектор BD на вектора BO и OD. Так как точка О - произвольная, то вектор BD можно представить как сумму векторов BO и OD.
Таким образом, вектор CM можно представить как сумму векторов BO и OD, то есть CM = BO + OD.
Итак, вектор CM можно разложить по векторам OA, OB и OC следующим образом: CM = BO + OD = a + b.