1. В треугольнике NMK О – точка пересечения медиан, MN = x; MK = y; MO = k(x+y). Найдите число k.

Тематика Геометрия
Уровень 5 - 9 классы
геометрия треугольник медиана точка пересечения медиан формула
0

  1. В треугольнике NMK О – точка пересечения медиан, MN = x; MK = y; MO = k(x+y). Найдите число k.

avatar
задан 6 месяцев назад

3 Ответа

0

Точка пересечения медиан треугольника, известная как центроид или барицентр, обладает интересным свойством: она делит каждую медиану в отношении 2:1, считая от вершины к середине противоположной стороны. Это значит, что если мы рассмотрим медиану NM треугольника NMK и точку O на этой медиане, то точка O делит медиану в отношении 2:1.

Так как MO = k(x + y), мы можем использовать информацию об отношении, в котором центроид делит медиану, чтобы выразить это через k. Рассмотрим, что отрезок MO составляет 2/3 от длины медианы, поскольку центроид делит медиану в отношении 2:1, начиная от вершины.

Длина медианы, проведённой к стороне, которая не участвует в её формировании (в данном случае к стороне NK), может быть выражена через длины сторон MN и MK и их сумму. Поскольку центроид делит медиану в отношении 2:1 от вершины к середине стороны, то расстояние от вершины N до центроида O будет равно 2/3 длины всей медианы.

Таким образом, MO = 2/3 медианы. Поскольку задача утверждает, что MO = k(x + y), то значение k равно 2/3, так как это соответствует той части медианы, которую составляет отрезок от вершины до центроида.

Ответ: k = 2/3.

avatar
ответил 6 месяцев назад
0

Для нахождения числа k воспользуемся свойством точки пересечения медиан в треугольнике. Это свойство гласит, что медиана, проведенная из вершины треугольника, делит другую сторону пополам. Таким образом, мы можем записать:

MO = k(x + y) = 1/2 MN = 1/2 x

Отсюда получаем уравнение:

k(x + y) = 1/2 * x

раскроем скобки и преобразуем:

kx + ky = 1/2 * x

kx = 1/2 * x - ky

k = 1/2 - k

k = 1/2

Таким образом, число k равно 1/2.

avatar
ответил 6 месяцев назад
0

K = 2/3

avatar
ответил 6 месяцев назад

Ваш ответ

Вопросы по теме